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Motivation \\
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* We like to:
— Compare different architectures.
— Compare different applications and implementations.
— Match applications and architectures effectively.

® For this we need:

— To characterize and quantify the dominant performance
aspects of our codes.

— Relate these performance aspects to hardware features.

* To do this across different architectures such a
characterization has to be hardware independent!
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Approach

* Develop a quantitative characterization of algorithms
and codes focusing on performance aspects.

* Avoid using any specific hardware models or
concepts for this characterization.

* Develop synthetic scalable performance probes and
benchmarks testing these characteristics.

® Our focus is the performance influence of global data-
access.
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®* Temporal Locality

— Re-use of recently accessed data
for regular and irregular data access patterns.

® Spatial Locality
— Access to contiguous memory locations.
— Regqular stride 1 access.
— Large messages between processes.

* Parallel data access
— Multiple concurrent load/store operations.
— Concurrent access on localized data structures.
— Large messages between processes.
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Parameters to characterize data access pattern:

® Re-use number for temporal locality.
— Hard to define hardware independent.
— Based on temporal locality function.

* Length of regular data access for spatial locality.

* Limiting length for message sizes for the concurrency
of data access.
— In codes this is limited by data-dependencies, etc.
— Is particularly important in parallel context.
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Temporal Locality
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How can we quantitatively describe data re-use?

Starting Point:

* Look at temporal distribution function:

— The probability with which | have used my next
data item within the last t accesses.

— At every access | have a probability f(t) to hit a
location | have visited within the last t cycles.
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Cumulative temporal Distribution
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Re-use Number
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Define a “re-use” number:
* M be the used memory in words.
® The code has a total of N data accesses.

* We look at all the accesses to a memory location X
and assign the values 0 or 1 to it depending If it IS
being accessed again within M data access steps.

* We call the average k of these values the re-use
probability of memory location X.

X

=

Z Vv
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Re-use Number
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® The average re-use for the whole code Is the

average k for window size M for all accessed
memory locations.

* This implies that the probability at the temporal
distance of t=M Is:

P(M) = k
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* We try to capture the ‘main’ re-use effect by using a
generic function with only a few numeric parameters.

* Approximate the temporal distribution function of
codes by a simple generic function with 1 parameter.

® For recursive algorithms the cumulative temporal
distribution function should be self-similar and scale-
Invariant. (A recursive algorithm is self-similar.)

&Power Function Distribution
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* Characterized by one number.
— Slope In log-log related to the ‘Re-use’ number.

* Concept does not use hardware concepts such

as ‘cache’
* Distribution function is problem size and scale
Invariant. L 0000 _
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Power Distribution

* All we need now Is a synthetic pseudo-random
algorithm to generate an address stream, which has a
power distribution as temporal distribution function.

* Many algorithms generate the same temporal
distribution, so we have some choices.

® The details of the chosen algorithm could produce
artifacts if not selected carefully.

* In particular the temporal distribution function is
Independent of the selected data mapping!

— Still (almost) any regularity possible!
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* Typically expressed by a mapping of the data
structure to the address space which permits

— Stride 1 access.

— Storage of data structures in hardware related units such as
cache lines.

— Easily quantified by the average access length.

Alternative concept:

* Affinity of data to processes which allows data access
localization Is also a (different) expression of spatial
locality.

— We have not explored this one yet.
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Benchmark Probe — Concept

We develop a synthetic benchmark program:

® Use indexed (“irregular”) data access.
* With the same control parameters as our characterization.

® Based on non-uniform random address generation.

— Power distribution of random numbers

— Exponent ? [0,1]; uniform random ?=1
* Approximates power-function as TDF.
® This should provide a lower bound for performance.
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Test Kernels

As test codes are analyzing the following kernels:
— Radix (Integer Sort)

— N-Body (Interaction of N bodies in three dimensions)
&sAlso without computational part.

— NAS CG (Conjugate Gradient, sparse linear systems)
&Also random matrix access in isolation.
— Matrix Matrix Multiplication

— FFT (1-dimensional complex FFT - Splash suite based)
&5Also consider transpose part separately.
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* For shared memory the concept is the same.

® For distributed memory we also need to
specify after how many iterations of the kernel
data have to be exchanged between processes.
This Is defined by the Granularity.

* There are several alternative implementations
possible, which affect parallel performance

substantially.
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* Limiting length for message sizes for the
concurrency of data access.

— In codes this is limited by data-dependencies, etc.
— Is particularly important in parallel context.

® Tends to be:

— Very large from theoretical point of view but
— Further limited by available memory sizes
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We tested different communication strategies:

® Direct: Send a message every time you find an
address on a remote process.

* Merge: Group remote accesses to minimize
messages.

— This requires 2 passes over address list.

* Merge and match: ‘Merge’ and eliminate

multiple references to the same address.
o
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* Characterization of temporal locality by approximating
the temporal distribution functions with power
functions seems to work fine.

— In particular in the sequential case.

* For spatial locality several concepts need to be
explored further.
— Especially for the parallel case.

* Aot of the difficulties are in choosing the right detalls
of the implementation.



